GEOMETRY 22 MID-TERM EXAM REVIEW
Note to student: This packet should be used as practice for the Geometry 22 midterm exam. This should not be the only tool that you use to prepare yourself for the exam. You must go through your notes, re-do homework problems, class work problems, formative assessment problems, and questions from your tests and quizzes throughout the year thus far. The sections from the book that are covered on the midterm exam are:

UNIT 1	
Chapter 1	
1-2	Points, Lines, and Planes
1-3	Measuring Segments
1-4	Measuring Angles
1-5	Angle Pairs
1-6	Basic Constructions
UNIT 2	
Chapter 9	
9-1	Translations
9-2	Reflections
9-3	Rotations
9-6	Dilations
Concept Byte 9-3	Symmetry
UNIT 3	
Chapter 2	
2-2	Conditional Statements
2-3	Biconditionals \& Definitions
2-5	Proof Intro (Properties of $=/ \cong$ \& Algebraic Proofs)
2-6	Proving Angles Congruent
Chapter 3	
3-1	Lines \& Angles
3-2	Properties of Parallel Lines
3-3	Proving Lines Parallel
3-5	Parallel Lines \& Triangles
3-6	Constructing Parallel \& Perpendicular Lines
Chapter 4	
4-1	Define Congruent Figures
4-2	Triangle Congruence by SSS \& SAS
4-3	Triangle Congruence by ASA \& AAS
4-6	Congruence in Right Triangles
4-4	Using Corresponding Parts of Congruent Triangles (with proofs)
4-5	Isosceles \& Equilateral Triangles
Chapter 5	
5-1	Midsegments of Triangles
5-2	Perpendicular \& Angle Bisectors
5-3	Bisectors in Triangles
5-4	Medians \& Altitudes
5-6	Inequalities in One Triangle
Chapter 6	
6-1	The Polygon-Angle Sum Theorems

Using the diagram to the right, give an example of each of the following:

1. A line: \qquad
2. A ray: \qquad
3. A plane: \qquad
4. A segment: \qquad

Using the diagram above, answer questions 5-8.
5. Name a point that is coplanar with points C, D, and H. \qquad
6. Name the intersection of plane $C D G$ and plane $E H F$. \qquad
7. Name a point that is collinear with $\overrightarrow{H A}$. \qquad
8. Name the intersection of $\overline{C H}$ and $\overleftrightarrow{A B}$. \qquad
9. Through any two points there is exactly one \qquad .
10. Assume that B is between A and C. If $A B=6$ units and $B C=13$ units, what is $A C$? \qquad
11. Using the diagram below, if $J R=4 x-12, R T=6 x+4$ and $J T=8 x+10$, find x.

12. In the diagram below, if $m \angle D Y L=(5 x+11)^{\circ}, m \angle L Y N=27^{\circ}$, and $m \angle D Y N=(2 x+65)^{\circ}$, solve for x and find $m \angle D Y N$.
$x=$ \qquad
$m \angle D Y N .=$ \qquad

13. If $\angle A$ and $\angle B$ are complementary, and $m \angle A=(2 x+15)^{\circ}$ and $m \angle B=25^{\circ}$, find x.
14. If $\angle 1$ and $\angle 2$ form a linear pair, and $m \angle 1=(3 x-9)^{\circ}$ and $m \angle 2=(2 x+24)^{\circ}$, find x.
15. $\overleftrightarrow{A B}$ is the perpendicular bisector of $\overline{P Q}$. If the intersection of $\overleftrightarrow{A B}$ and $\overline{P Q}$ is R and $P R=16$, find $P Q$.

$$
P Q=
$$

\qquad
16. $\overparen{A B}$ bisects $\overline{C D}$ at point E. If $C E=4 x+11$ and $D E=7 x-25$, find the following:
$x=$ \qquad
$D E=$ \qquad
$C D=$ \qquad
17. $\overrightarrow{A K}$ bisects $\angle T A N$. If $m \angle T A N=(8 x-20)^{\circ}$ and $m \angle K A N=(x+11)^{\circ}$, find each of the following:
$x=$ \qquad
$m \angle N A K=$ \qquad
$m \angle T A N=$ \qquad
18. If $C D=5 x-7$, find the indicated values.

a) $x=$ \qquad b) $\mathrm{CE}=$ \qquad c) $\mathrm{CD}=$ \qquad
19. a) What is $m \angle D T B$? \qquad
b) What is $m \angle B T C$? \qquad

20. If $m \angle E F G=43^{\circ}$, what is the measure of its supplement? \qquad
21. In the figure below, $m \angle D A F=18 x-3$. Find the indicated measures.
a) $x=$ \qquad
b) $m \angle F A E=$ \qquad

22. In the figure below, find the indicated measures.

a) $x=$ \qquad
b) $m \angle K L N=$ \qquad
23. Solve for \boldsymbol{x} in the following problems.
a.

b.

c.

24. Refer to the statement: "All altitudes form right angles."
a) Rewrite the statement as a conditional.
b) Identify the hypothesis and conclusion of the conditional.

Hypothesis:
Conclusion:
c) Draw a Venn to illustrate the statement.
d) Write the converse of the conditional. e) If the converse is false, give a counterexample:
25. Refer to the statement: "A polygon with exactly three sides is called a triangle."
a) Rewrite the statement as a conditional.
b) Write the converse.
c) Write the biconditional.
d) Decide whether the statement is a definition. Explain your reasoning.
26. Given the following Venn diagram, state a conditional using the information.

27. Explain the similarities and differences between supplementary angles and a linear pair.
28. Explain the similarities and differences between skew lines and parallel lines.
29. Determine whether the following is a translation, reflection, or rotation.
a) \qquad

b) \qquad
30. Reflect $\triangle \mathrm{ABC}$ over the x -axis.
31. On the same graph, reflect $\triangle \mathrm{ABC}$ over the y -axis.
32. On the same graph, rotate $\triangle \mathrm{ABC} 180^{\circ}$ about the origin

33. The dashed-line figure is a dilation image of the solid-line figure. The labeled point is the center of dilation. Tell whether the dilation is an enlargement or a reduction. Then find the scale factor of the dilation.
a.

b.

c.

34. Determine if the following scale factor would create an enlargement, reduction, or isometric figure.
a. 3.5
b. $2 / 5$
c. 0.6
d. 1
e. $4 / 3$
f. $-5 / 8$
35. In the figure at right, lines r and s are parallel, $\mathrm{m} \angle 2=40^{\circ}$, and $\mathrm{m} \angle 4=60^{\circ}$; find:
a) $\mathrm{m} \angle 1$
b) $\mathrm{m} \angle 3$ \qquad
c) $\mathrm{m} \angle 5$ \qquad d) $\mathrm{m} \angle 6$ \qquad
e) $\mathrm{m} \angle 7$ \qquad f) $\mathrm{m} \angle 8$ \qquad
g) $\mathrm{m} \angle 9$ \qquad h) $\mathrm{m} \angle 10$ \qquad
i) $\mathrm{m} \angle 11$ \qquad j) $\mathrm{m} \angle 12$ \qquad
k) $\mathrm{m} \angle 13$ \qquad 1) $\mathrm{m} \angle 14$ \qquad

36. If lines k and l are parallel, $\mathrm{m} \angle 4=(3 \mathrm{x}-10)^{\circ}$ and $\mathrm{m} \angle 5=(\mathrm{x}+70)^{\circ}$; find:

a) $m \angle 8$ \qquad
b) $\mathrm{m} \angle 6$ \qquad
c) $\mathrm{m} \angle 3$ \qquad
d) $\mathrm{m} \angle 7$ \qquad
37. If $m \Varangle H A G=(7 x+4)^{\circ}$, and $m \Varangle C A B=(9 x-10)^{\circ}$, find the following:
a) $x=$ \qquad
b) $\mathrm{m} \Varangle \mathrm{GAH}=$ \qquad
c) $\mathrm{m} \Varangle \mathrm{CAB}=$ \qquad d) $m \not \subset G=$ \qquad

38. The interior angle sum of a regular polygon is 1980°. How many sides does the polygon have?
39. Find $\mathrm{m} \angle 1=$ \qquad

40. An exterior angle of a regular polygon is 24°. Find the number of sides in the polygon.
41. Find the interior angle sum for each polygon:
a.

b. dodecagon
c. 1002-gon
42. Find the missing measure:
a.

b.

43. Find the measure of one interior angle for the following regular polygons.
a.

b.

44. Find the measure of one exterior angle for the following regular polygons (round to tenths in necessary):
a.

b.

45. Given one interior angle measure of a regular polygon, find the number of sides the polygon has:
a. 120°
b. 156°
46. List the names of polygons 3 through 14 .
47. In the diagram below F, E, and D are midpoints.

$$
\mathrm{AC}=
$$

If $\mathrm{AB}=55$, then $\mathrm{FE}=$ \qquad
48. $x=$ \qquad

$$
\mathrm{m} \angle \mathrm{~N}=
$$

\qquad
\qquad

49. Solve for y, then find the value of the $\angle P$ in the figure below.

50. Can the following groups of sides be the sides of a triangle? Explain.
a. $15,10,5$
b. $20,21,3$
c. $7,4,15$
51. In the figure below, $m \angle S=24^{\circ}$ and $m \angle O=130^{\circ}$. Which side of $\triangle S O X$ is the shortest side? Why?

52. Determine $m \npreceq A, m \Varangle B$, and $m \Varangle C$ if $\angle A$ is supplementary to $\angle B$ and complementary to $\angle C$.

$$
m \angle A=(x+10)^{\circ}, m \angle B=(12 x+1)^{\circ}, m \angle C=(5 x+2)^{\circ}
$$

53. Write the conditional and converse of the statement, and determine if the converse is true. If it is not, write a counterexample.

If an angle measure is 32 degrees, then it is an acute angle.

54. Find the value of x and y.

a.

b.

c.

55. Solve for the given variable and find the angle measures.
d.

a.

b.

c.

d.

e.

f.

56. Use the diagram to the right.
a. What type of triangle is $\triangle A B D$? \qquad
b. What type of triangle is $\triangle B C D$?
c. Find $m \angle A B C$ \qquad

57. Use the congruency statement to fill in the corresponding congruent parts.
$\Delta E F I \cong \Delta H G I$ \qquad $\overline{F E} \cong$ \qquad
$\square E F I \cong \square$ \qquad

$$
\overline{F I} \cong
$$$F I E \cong \square$ \qquad

$\overline{I E} \cong$ \qquad
58. For the following, name which triangle congruence theorem or postulate you would use to prove the triangles congruent.
a.

b.

c.

59. Mark any additional information you can FIRST (ex: vertical angles or reflexive property). Then, label and state what ADDITIONAL information is required in order to know that the triangles are congruent for the reason given.
a. ASA
b. ASA
c. SAS

extra part: \qquad \cong \qquad
$\Delta \mathrm{DUT} \cong \Delta$ \qquad
d. SSS

extra part: \qquad \cong \qquad extra part: \qquad \cong \qquad $\Delta \mathrm{LMK} \cong \Delta$ \qquad $\Delta \mathrm{UWV} \cong \Delta$ \qquad
e. SAS

extra pain. \qquad $=$ \qquad $\Delta \mathrm{JIH} \cong \Delta$ \qquad
f. $\quad \mathrm{HL}$

extra part: \qquad \cong \qquad $\Delta \mathrm{BAC} \cong \Delta$
\qquad

\qquad
60. For which values) of x are the triangles congruent?
a. $x=$ \qquad

b. $x=\frac{}{\mathrm{A}}$

c. $x=$ \qquad
61. Describe what is being constructed in the figure at right.
62. Describe what is being constructed in the figure at right.

63. Describe what is being constructed in the figure at right.

64. Refer to the figure at the right.
a.) $\overline{E B}$ is a \qquad of $\triangle \mathrm{ABC}$
b.) \qquad is an altitude of $\triangle \mathrm{ABC}$.

65. Find the value of x if $\overline{A D}$ is an altitude of $\triangle \mathrm{ABC}$.

66. Solve for \boldsymbol{x}.

a.

b.

c.

67. In $\triangle G H I, R, S$, and T are midpoints. If $m \angle G=75^{\circ}$ and $m \angle H S R=63^{\circ}$. Find the $m \angle H$.

68. $P M=4 \mathrm{x}+7$ and $P N=12 \mathrm{x}-5$

Find $P L$.

71. Solve for x.

69. Find the value of x if $\overline{A D}$ is an altitude of $\triangle \mathrm{ABC}$.

70. a) According to the diagram, what are the lengths of $\overline{P Q}$ and $\overline{P S}$?
b.) How is $\overline{P R}$ related to $\angle S P Q$?
c.) Find the value of n.

d.) Find $m \angle S P R$ and $m \angle Q P R$.
71. Find the value of the missing variables in the problems below.
a.

b.

72. Find the range of possible measures for $\overline{X Y}$ in $\triangle X Y Z$.
a. $\mathrm{XZ}=6$ and $\mathrm{YZ}=6$
b. $\mathrm{XZ}=9$ and $\mathrm{YZ}=5$
c. $\mathrm{XZ}=11$ and $\mathrm{YZ}=6$
73. Draw the angle bisectors of the triangle at right.
74. Draw the perpendicular bisectors of the triangle at right.

75. Draw the medians of the triangle at right.
76. Draw the altitudes of the triangle at right.
77. If $\mathrm{HJ}=26$, then $\mathrm{KL}=$ \qquad
78. If $\mathrm{HJ}=3 \mathrm{x}-1$ and $\mathrm{KL}=\mathrm{x}+1$, then $\mathrm{HJ}=$ \qquad

79. Solve for x .

80. Given: $m \angle S R T=88^{\circ}, m \angle Q=49^{\circ}$

Prove: $m \angle P=43^{\circ}$

Statements

1. $m \angle S R T=88^{\circ}, m \angle Q=49^{\circ}$	1. Given
2. $\angle P R Q$ and $\angle S R T$ are vertical angles	2.
3.	3. Vertical Angle Theorem
4. $m \angle P R Q=m \angle \mathrm{SRT}$	4.
5. $m \angle P R Q=88^{\circ}$	5.
6. $m \angle P+m \angle Q+m \angle P R Q=180^{\circ}$	6.
7. $m \angle P+49^{\circ}+88^{\circ}=180^{\circ}$	7.
8.	8. Combine Like Terms
9.	9. Subtraction Property of Equality

81. Given: Q is the midpoint of $\overline{P R}, \square P \cong \square Q R T$

Prove: $\triangle S Q P \cong \triangle T Q R$

Statements	Reasons
1. Q is the midpoint of $\overline{P R}$	1.
2. $\overline{P Q} \cong \overline{R Q}$	2.
3. $\square P \cong \square Q R T$	3.
4. $\square S Q P$ and $\square T Q R$ are vertical angles	4.
5. $\square S Q P \cong \square Q R$	5.
6.	$\mathbf{6}$.

82. Given: $\overline{R T} \cong \overline{R U}, \overline{T S} \cong \overline{U S}$

Prove: $\triangle T R S \cong \triangle U R S$

Statements	Reasons
1. $\overline{R S} \cong \overline{R S}$	1.
2. $\overline{R T} \cong \overline{R U}$	2.
3.	3. Given
4. $\triangle T R S \cong \triangle U R S$	4.

Given: $\angle 1 \cong \angle 4$
83. Prove: $\triangle A B C$ is isosceles

Statements	Reasons
1. $\angle 1 \cong \angle 4$	1.
2. $m \angle 1=m \angle 4$	2.
3. $\angle 1$ and $\angle 2$ form a linear pair, $\angle 3$ and $\angle 4$ form a linear pair	3.
4. $\angle 1$ and $\angle 2$ are supplementary 4. $\angle 3$ and $\angle 4$ are supplementary	4.
5. $\begin{aligned} & m \angle 1+m \angle 2=180^{\circ} \\ & m \angle 3+m \angle 4=180^{\circ} \end{aligned}$	5.
6. $m \angle 1+m \angle 2=m \angle 3+m \angle 4$	6.
7. $m \angle 1+m \angle 2=m \angle 3+m \angle 1$	7.
8. $m \angle 2=m \angle 3$	8.
9. $\angle 2 \cong \angle 3$	9.
10. $\overline{A B} \cong \overline{C B}$	10.
11.	11.

Given: $\overline{V X} \cong \overline{V W}$
84. $\quad Y$ is the midpoint of $\overline{W X}$

Prove: $\angle V Y X \cong \angle V Y W$

Statements	Reasons
$1 . \overline{V X} \cong \overline{\overline{V W}, \quad Y \text { is the midpoint of } \overline{W X}}$	1.
$2 . \overline{W Y} \cong \overline{X Y}$	2.
3.	3. Reflexive Property
4.	4. SSS
5.	5.

85. Given: $\overline{A B} \cong \overline{A C}, m \angle C=80^{\circ}, m \angle B=(3 x-1)^{\circ}$

Prove: $x=27$

Statements	Reasons
1. $\overline{A B} \cong \overline{A C}$	1. Given
2. $\angle B \cong \angle C$	2.
3. $m \angle B=m \angle C$	3.
4. $m \angle C=80^{\circ}, m \angle B=(3 x-1)^{\circ}$	4.
5. $3 x-1=80$	5.
6. $3 x=81$	6.
7.	7.

86. Given: $\angle T R S$ and $\angle T R L$ are right angles, $\angle R T S \cong \angle R T L$ Prove: $\overline{R S} \cong \overline{R L}$

Statements	Reasons
1. $\angle R T S \cong \angle R T L$	1.
2. $\overline{T R} \cong \overline{T R}$	2.
3. $\angle T R S$ and $\angle T R L$ are right angles	3.
4. $\angle T R S \cong \angle T R L$	4.
5. $\Delta T R S \cong \triangle T R L$	5.
6. $\overline{R S} \cong \overline{R L}$	6.

87. Given: $\angle 1$ and $\angle 3$ are supplementary

Prove: $m \| n$

Statements	Reasons
1) $\angle 1$ and $\angle 3$ are supplementary; transversal p	1)
2)	2)
3) $\angle 1$ and $\angle 2$ are a linear pair	3) definition of
4$) \angle 1$ and $\angle 2$ are supplementary	4)
5)	5) definition of
6) $\mathrm{m} \angle 1+\mathrm{m} \angle 3=\mathrm{m} \angle 1+\mathrm{m} \angle 2$	$6)$
7$) \mathrm{m} \angle 3=\mathrm{m} \angle 2$	$7)$
8) $\angle 3 \cong \angle 2$	$8)$
9) $\angle 3 \mathrm{and} \angle 2$ are corresponding angles	$9)$
10$) \mathrm{m} \square \mathrm{n}$	$10)$

88.

Given: $m \| n$
Prove: $m \angle 1+m \angle 7=180$

Reasons

1. $\mathrm{m} \| \mathrm{n}$
2.
3. $\angle 1$ and $\angle 5$ are Corresp. Angles
4.
5. $\angle 1 \cong \angle 5$
6.
7. $m \angle 1=m \angle 5$
8.
9. $\angle 5$ and $\angle 7$ are a Linear Pair
10.
11. $m \angle 5+m \angle 7=180$
12.
13. Linear Pair Postulate
14.
15.
