Name:

* Denotes Calculator Allowed

1. Solve the equations: a. $x^2 - 5x + 6 = 0$

b.
$$2x^2 - 3x - 9 = 0$$

2. Determine the Domain and Range of the functions below:

- 3. *Given the function, $f(x) = 3x^2 2x + 1$, determine the average rate of change over the interval [1, 8].
- 4. Rationalize the Complex Expression

a.
$$\frac{2+i}{4-3i}$$
 b. $(3+2i)(5-3i)$

- 5. Approximate the following from the graph.(The interval for both the x and y axis are by one)
 - a. Domain
 - b. Range
 - c. X-intercepts
 - d. Y-intercepts
 - e. Local maximum:
 - f. Local minimum:
 - g. Absolute Maximum:

- h. Absolute Minimum:
- i. Increasing:
- j. Decreasing:
- k. End behavior:
- 6. *The height of a flare can be modeled by the equation $h(t) = -16t^2 + 25t + 10$, where h is in feet and t is in seconds. What will be the maximum height of the flare?
- 7. Determine the inverse of the following functions. Determine their Domain. a. f(x) = 3x + 1b. $f(x) = \frac{2x+1}{x-1}$

8. Given the functions f and g determine each of the following:			
a. $f(x) = 2x + 10$	$g(x) = x^2 + 9x + 20$	b. $f(x) = \frac{1}{x-1}$	$g(x) = \frac{x^2 - 1}{x}$
i. (f + g) =	Domain:	i. $(f + g) =$	Domain:
ii. (f – g) =	Domain:	ii. (f – g) =	Domain:
iii. (f · g) =	Domain:	iii. (f ∙g) =	Domain:
iv. $\left(\frac{f}{g}\right)$ =	Domain:	iv. $\left(\frac{f}{g}\right)$ =	Domain:
v . [<i>f</i> ∘ <i>g</i>](<i>x</i>)		v . [f ∘ g](x)	
vi. [g • f](x)		vi. [g • f](x)	

vii. $[f \circ g](4)$ vii. $[f \circ g](1)$

- 9. Determine if the following functions are symmetric to the x-axis, y-axis, origin or none.
- a. $f(x) = x^4 + 2x^2$ b. $f(x) = \frac{1}{3}x^5 - 3x^2$ c. $f(x) = -\frac{2}{x}$

11. Given $f(x) = x^2 - 2x + 3$ and g(x) = x + 6. Determine: a. f(3)

- **b.** $(f \circ g)(x)$
- **c.** $(f \circ g)(-2)$
- 12. Verify by composition that f and g are inverses.

a.
$$f(x) = \sqrt{x-1} g(x) = x^2 + 1$$

b. $f(x) = 2x + 1 g(x) = \frac{x-1}{2}$

Chapter 2:

13. Describe the end behavior of the following polynomial functions.

a. $f(x) = -x^6 + 3x - 1$ b. $g(x) = 5x^7 + x^3 - x + 2$

14. Find all solutions of $x^3 - 3x - 2 = 0$

- 15. Determine the remainder when $5x^3 3x^2 + 2x 1$ is dvided by x + 1.
- 16. Write a polynomial of 4th degree given the roots 1, 3, and 4i.

17. *Use a graphing utility to approximate the solutions. Express the answer correct to two decimal places. $x^3-4x+2=0$

18. Expand the binomials

b.
$$(x+2y)^3$$

$$19. \quad \frac{4}{x-2} - \frac{2}{x} = \frac{14}{x^2 - 2x}$$

20. Solve the inequality:
$$\frac{x^2 - x - 6}{x - 1} \le 0$$

- 21. For each of the following:
- i. Determine the domain of the function.
- ii. Determine the x and y intercepts.
- iii. Determine the vertical asymptote(s).
- iv. State, if any, any horizontal or oblique asymptote(s).

a.
$$f(x) = \frac{4x}{x+1}$$
 b. $f(x) = \frac{x^2+5x+6}{x+3}$

22. Determine the equations of the asymptotes and/or holes for the following functions:

a.
$$f(x) = \frac{2x^3 + 7x^2 - 4}{x^2 + 2x - 3}$$
 b. $g(x) = \frac{x + 2}{x^2 + 2x - 3}$

c.
$$k(x) = \frac{2x^2 + 5x - 1}{5x^2}$$
 d. $h(x) = \frac{x^2 + 5x - 6}{2x^2 - 5x + 3}$

- 23.For the function $f(x) = -x^2(x+2)(x-3)^2$
- a. Apply the leading term test to determine the end behavior.
- b. Find the zeros and state the multiplicity of the zero.
- c. Use the information from parts a and b to sketch a graph of the function.

Chapter 3: 24.Solve for x: a. $3^{x^2-x} = 9$ b. $\ln(3x-2) + \ln(x-1) = 2\ln x$

c. $\log_{16} \sqrt[3]{128} = x$ d. $\log_3(2x+5) - \log_3 x = 4$

25. Evaluate:
a. By hand: log₁₆ ³√32
b. *Using Calculator: log₂ 15 (nearest hundredth)

26. Write as a single logarithm:
$$4\log_3 x - \frac{1}{3}\log_3 k + \frac{2}{5}\log_3 v - 2\log_3 w$$

27.Use the properties of logarithms to express as a sum/difference of logs: $\log_k \frac{j^7 \sqrt[3]{b^2}}{t^2}$

- 28.*What principal will yield an amount of \$10,000 at 5.5% interest over 3 years compounded:
 - a. Monthly b. Continuously

- 29. *Albert puts \$200 into an account to use for school expenses. The account earns 12% interest, compound monthly. How much will be in the account after 5 years.
- 30. *Determine the amount Nicolette needs to deposit today to have \$5000 for her wedding in 10 years if the account she is depositing in earns 2.5 % interest, compounded quarterly.

31. *Morgan has \$450 to deposit into an account for a 5 year investment. Account A earns 6.5% interest compounded annually and account B earns 2.5% compounded continuously, which account should Brittany choose?

- 32. *How long will it take for Henry to triple his investment if the account he is using earns 2.8% compounded continuously?
- 33. *What rate will Henrietta need to invest her money in to double her investment in 5 years if the account is compounded continuously?