Fairfield Elementary Mathematics Grade 2

Unit 2: Place Value To One Thousand

In this unit your child will:

- Identify the place and value of a 3-digit number
- Read, write, model, and compare 2- and 3-digit numbers
- Represent numbers in a variety of ways

- Determine equivalence

- Investigate the 100 chart

Your child will learn and practice these skills by solving problems like those shown below. Keep this sheet for reference when you're helping with homework.

Prob	ems				Comments
Write	number:	Hundreds This number	Tens	Ones	In this unit, students think about the value of a number by looking at its place. For example, the number 113 can be broken into 1 hundred, 1 ten, and 3 ones. The picture on the left above shows how we make this number with place-value pieces. Students will think of other ways to break a number into its component parts. For instance, 113 can also be thought of as 11 tens plus 3 ones (shown in place-value pieces above right). Students are also challenged to build numbers based on their component parts as they solve number riddles such as, "I have 2 hundreds, 4 tens and 3 ones. What number am I?" (243)
Write words to label theset of base ten pieces with the correct name. one hundred thirteen					
629 How many hundreds are in this number? How many tens are in this number? How many ones are in this number?					
Answer the riddle: I have 12 tens and 3 ones. Who am I? " 12 tens is the same as $120.120+3=123$."					
Identify each amount. Write the number. Show which is greater and which is less.$60>45$					Students determine and compare the value using the symbols for greater than, less than, and equal to. While tasks such as the one to the left appear straightforward, some second graders may count each individual square by 1 s rather than efficiently counting by 10 s and 1 s . Others may not understand the value of the items, counting each by 1s-thus getting a quantity of 6 for the first group and a quantity of 9 for the second group. Quantities are compared using the greater than or less than symbols. Students draw 2 dots beside the number that is greater, 1 dot beside the number that is less, and then connect the dots: $136>125 \quad 136>125$

Frequently Asked questions About Unit 2

Q:Iunderstandwhystudents should knowthe hundreds, tens, and ones for adding and subtracting, but why do they need to know different ways to break numbers apart?
A: One of the key strategies developed in this unit is breaking numbers into their component parts (also known as decomposing numbers). The visual models shown in the example above help your child understand the relative size of each digit compared with other digits. For example, when comparing 53 with 35 , they should understand that 53 is the larger number because it is made of 5 tens, while 35 has only 3 tens.

The ability to see and understand numbers as groups of ten and ones is also essential for learning how to add and subtract. For example, when a student understands that 5 ones plus 8 ones is the same as 1 ten and 3 ones, they can choose an easy strategy to solve $35+28$. First they add the 3 tens and 2 tens to get 5 tens, or 50 , then add 1 ten and 3 ones to arrive at the sum of 63 .

Q:How is this unit teaching my child to add 2-digit numbers?
A: During second grade students will learn different ways to think about adding and subtracting numbers flexibly and efficiently. When children first begin adding 2-digit numbers they will break or split numbers into tens and ones and add the parts together. For example, a student might add 35 and 22 by adding the tens, adding the ones, and then combining the results ($30+20=50,5+2=7$, and $50+7=57$). Other times students treat numbers as lengths on a number line, making jumps of 10 s and 1 s to get from one number to another.
The measuring activities in this unit help students think about combining two quantities on a measuring tape. A measuring tape is like a number line. If they're adding 35 and 22 , they may start at 35 , then jump 2 tens on the number line (35 to 45,45 to 55) and then jump 2 ones (55 to 56,57). The number line encourages students to use landmark numbers like 10,50 , and 100 and count by 10 s and 100 s, which is useful for mental computation. Your student will explore fluency with adding and subtracting in greater detail in Unit 3.

