CHAPTER 1 Exploring Data

1.1
 Analyzing Gategorical Data

The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore

Analyzing Categorical Data

Learning Objectives

After this section, you should be able to:
\checkmark DISPLAY categorical data with a bar graph
\checkmark IDENTIFY what makes some graphs of categorical data deceptive
\checkmark CALCULATE and DISPLAY the marginal distribution of a categorical variable from a two-way table
\checkmark CALCULATE and DISPLAY the conditional distribution of a categorical variable for a particular value of the other categorical variable in a two-way table
\checkmark DESCRIBE the association between two categorical variables

Categorical Variables

Categorical variables place individuals into one of several groups or categories.

Displaying Categorical Data

Frequency tables can be difficult to read.

Sometimes is is easier to analyze a distribution by displaying it with a bar graph or pie chart.

Frequency Table	
Format	Count of Stations
Adult Contemporary	1556
Adult Standards	1196
Contemporary Hit	569
Country	2066
News/Talk	2179
Oldies	1060
Religious	2014
Rock	869
Spanish Language	750
Other Formats	1579
Total	13838

Displaying Categorical Data

Frequency tables can be difficult to read.

Sometimes is is easier to analyze a distribution by displaying it with a bar graph or pie chart.

Relative Frequency Table	
Format	Percent of Stations
Adult Contemporary	11.2
Adult Standards	8.6
Contemporary Hit	4.1
Country	14.9
News/Talk	15.7
Oldies	7.7
Religious	14.6
Rock	6.3
Spanish Language	5.4
Other Formats	11.4
Total	99.9

Graphs: Good and Bad

Bar graphs compare several quantities by comparing the heights of bars that represent those quantities. Our eyes, however, react to the area of the bars as well as to their height.
\checkmark When you draw a bar graph, make the bars equally wide.

It is tempting to replace the bars with pictures for greater eye appeal.
\checkmark Don't do it!

There are two important lessons to keep in mind:
(1)beware the pictograph, and
(2)watch those scales.

Two-Way Tables and Marginal Distributions

When a dataset involves two categorical variables, we begin by examining the counts or percents in various categories for one of the variables.

A two-way table describes two categorical variables, organizing counts according to a row variable and a column variable.

Young adults by gender and chance of getting rich			
	Female	Male	Total
Almost no chance	96	98	$\mathbf{1 9 4}$
Some chance, but probably not	426	286	$\mathbf{7 1 2}$
A 50-50 chance	696	720	$\mathbf{1 4 1 6}$
A good chance	663	758	$\mathbf{1 4 2 1}$
Almost certain	486	597	$\mathbf{1 0 8 3}$
Total	$\mathbf{2 3 6 7}$	$\mathbf{2 4 5 9}$	$\mathbf{4 8 2 6}$

What are the variables described by this two-way table?

How many young adults were surveyed?

Two-Way Tables and Marginal Distributions

The marginal distribution of one of the categorical variables in a twoway table of counts is the distribution of values of that variable among all individuals described by the table.

Note: Percents are often more informative than counts, especially when comparing groups of different sizes.

How to examine a marginal distribution:

1) Use the data in the table to calculate the marginal distribution (in percents) of the row or column totals.
2)Make a graph to display the marginal distribution.

Two-Way Tables and Marginal Distributions

Examine the marginal distribution of chance of getting rich.

Young adults by gender and chance of getting rich			
	Female	Male	Total
Almost no chance	96	98	$\mathbf{1 9 4}$
Some chance, but probably not	426	286	$\mathbf{7 1 2}$
A 50-50 chance	696	720	$\mathbf{1 4 1 6}$
A good chance	663	758	$\mathbf{1 4 2 1}$
Almost certain	486	597	$\mathbf{1 0 8 3}$
Total	$\mathbf{2 3 6 7}$	$\mathbf{2 4 5 9}$	$\mathbf{4 8 2 6}$

Chance of being wealthy by age 30

Response	Percent
Almost no chance	$194 / 4826=4.0 \%$
Some chance	$712 / 4826=14.8 \%$
A 50-50 chance	$1416 / 4826=29.3 \%$
A good chance	$1421 / 4826=29.4 \%$
Almost certain	$1083 / 4826=22.4 \%$

Relationships Between Categorical Variables

A conditional distribution of a variable describes the values of that variable among individuals who have a specific value of another variable.

How to examine or compare conditional distributions:

1) Select the row(s) or column(s) of interest.
2) Use the data in the table to calculate the conditional distribution (in percents) of the row(s) or column(s).
3) Make a graph to display the conditional distribution.

- Use a side-by-side bar graph or segmented bar graph to compare distributions.

Relationships Between Categorical Variables

Calculate the conditional distribution of opinion among males. Examine the relationship between gender and opinion.

Young adults by gender and chance of getting rich

	Female	Male	Total
Almost no chance	96	98	194
Some chance, but probably not	426	286	$\mathbf{7 1 2}$
A 50-50 chance	696	720	1416
A good chance	663	758	1421
Almost certain	486	597	1083
Total	2367	2459	4826

Chance of being wealthy by age 30

Response	Male	Female
Almost no chance	$98 / 2459=$	$96 / 2367=$
	4.0%	4.1%
Some chance	$286 / 2459=$	$426 / 2367=$
	11.6%	18.0%
A 50-50 chance	$720 / 2459=$	$696 / 2367=$
	29.3%	29.4%
A good chance	$758 / 2459=$	$663 / 2367=$
	30.8%	28.0%
Almost certain	$597 / 2459=$	$486 / 2367=$
	24.3%	20.5%

Relationships Between Categorical Variables

Can we say there is an association between gender and opinion in the population of young adults?

Making this determination requires formal inference, which will have to wait a few chapters.

Caution!

Even a strong association between two categorical variables can be influenced by other variables lurking in the background.

Data Analysis: Making Sense of Data

Section Summary

In this section, we learned how to...
\checkmark DISPLAY categorical data with a bar graph
\checkmark IDENTIFY what makes some graphs of categorical data deceptive
\checkmark CALCULATE and DISPLAY the marginal distribution of a categorical variable from a two-way table
\checkmark CALCULATE and DISPLAY the conditional distribution of a categorical variable for a particular value of the other categorical variable in a two-way table
\checkmark DESCRIBE the association between two categorical variables

